
C introduction part 1



Why is C more efficient / faster?

• Explicit allocation of resources (memory)

• Type declarations lets compiler know what will be computed

• Compiler can optimize computation

• Dynamic, interpreted languages (e.g, Python) cannot optimize because 
they don’t know what data will be fed to the program until runtime

Language Type Compiled/Interpreted

C statically typed compiled

Python dynamically typed interpreted

MATLAB dynamically typed JIT (compiled piecewise)



Steps for code execution

Compiled language

• Write code

• Compile in terminal

• Fix compilation errors

• Execute

• Check results

• Debug

Interpreted language

• Write code

• Execute parts of your code in 
REPL

• Check results

• Write more code

• Execute more parts of your code in 
REPL

• Check results

• Debug



First program

1. Write the program and save it to a file

(“helloworld.c”)

2. Compile the program to generate an executable

3. Run the program

VSCode terminalVSCode script window



or

?

see https://stakahama.gitlab.io/sie-eng270/C_intro.html#org0bae946

https://stakahama.gitlab.io/sie-eng270/C_intro.html#org0bae946


Terminal

• Interact with the operating system. Typical commands (non-exhaustive!): 
https://sieprog.ch/#terminal

• cd: change directory (“./” current directory, “../” up one directory)

• pwd: check current working directory

• gcc: compile program with gcc (run compiled file “program” with “./program”)

• gdb: run gdb

• echo: print

• ls: list contents of directory

• POSIX-compliant shell
• macOS, Linux – default

• Windows – MSYS2 / Git Bash. Note path separator “/” for POSIX-compliant, “\” for 
Windows cmd

• USE TAB COMPLETION!!! (to save yourself keystrokes)

https://sieprog.ch/#terminal


Back to C: Data types

• You must declare data types for all variables and functions. 
• https://sieprog.ch/#c/variables

• https://sieprog.ch/#c/fonctions

• Where?
• Close to where it is used

• At the beginning of the function

• Within a loop (if used only in the loop)

• Do not forget to initialize variables when you declare them.

https://sieprog.ch/#c/variables
https://sieprog.ch/#c/fonctions


Data types

https://logicmojo.com



32-bit

(32 binary digits)

64-bit

(64 binary digits)

float

single precision

double

double precision

Floating point representation

https://en.wikipedia.org/wiki/IEEE_754-1985



1 byte = 8 bits

Size and range of values

https://c-programmingbooks.blogspot.com



Pointer data types

• Essential for programming in C

• See next lesson



Debugging

• Use print statements or debugger

• gdb (GNU debugger) 
• from command line

• https://sieprog.ch/#gdb

• https://www.tutorialspoint.com/gnu_debugger/gdb_commands.htm 

• through VS Code
• https://code.visualstudio.com/docs/cpp/cpp-debug

• https://code.visualstudio.com/docs/cpp/config-mingw (Windows)

• lldb is also available, but gdb is recommended. lldb is part of the clang compiler 
suite and gdb is part of the gcc compiler suite, but, in principle, the two can be 
used with either compiler.

• Note that C++ is a superset of C; many tutorials on C++ (e.g., installation, 
debugging) will apply to C.

https://sieprog.ch/#gdb
https://www.tutorialspoint.com/gnu_debugger/gdb_commands.htm
https://code.visualstudio.com/docs/cpp/cpp-debug
https://code.visualstudio.com/docs/cpp/config-mingw


GDB in VS Code

gear box

step 1 click on the gear box

step 2 check that the debugger is set to right path

(save)
step 0 click where you want your program to stop 

to inspect variables – you should see a red dot appear



step 3 select debug C/C++ file

step 4 enjoy!



Testing installation

Is the problem with the compiler, or with VS Code calling the compiler?

→ USE THE TERMINAL

Is the right compiler being used?

→ type “which gcc” without quotes (“where gcc” on Windows cmd)

Am I in the right directory?

→ type “pwd” without quotes, and then “ls” to see what’s in the directory


	Slide 1: C introduction part 1
	Slide 2: Why is C more efficient / faster?
	Slide 3: Steps for code execution
	Slide 4: First program
	Slide 5
	Slide 6: Terminal
	Slide 7: Back to C: Data types
	Slide 8: Data types
	Slide 9: Floating point representation
	Slide 10: Size and range of values
	Slide 11: Pointer data types
	Slide 12: Debugging
	Slide 13: GDB in VS Code
	Slide 14
	Slide 15: Testing installation

